Negative moments of the Riemann zeta-function

Alexandra Florea (University of California - Irvine)

05-Dec-2022, 19:00-20:00 (3 years ago)

Abstract: I will talk about recent work towards a conjecture of Gonek regarding negative shifted moments of the Riemann zeta-function. I will explain how to obtain asymptotic formulas when the shift in the Riemann zeta function is big enough, and how we can obtain non-trivial upper bounds for smaller shifts. I will also discuss some applications to the question of obtaining cancellation of averages of the Mobius function. Joint work with H. Bui.

combinatoricsnumber theory

Audience: researchers in the topic


Lethbridge number theory and combinatorics seminar

Organizer: Félix Baril Boudreau*
Curator: Ertan Elma
*contact for this listing

Export talk to